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6 ABSTRACT: Identifying chemical compounds is essential in
7 several areas of science and engineering. Laser-based techniques
8 are promising for autonomous compound detection because the
9 optical response of materials encodes enough electronic and

10 vibrational information for remote chemical identification. This has
11 been exploited using the fingerprint region of infrared absorption
12 spectra, which involves a dense set of absorption peaks that are
13 unique to individual molecules, thus facilitating chemical
14 identification. However, optical identification using visible light
15 has not been realized. Using decades of experimental refractive
16 index data in the scientific literature of pure organic compounds
17 and polymers over a broad range of frequencies from the ultraviolet
18 to the far-infrared, we develop a machine learning classifier that can
19 accurately identify organic species based on a single-wavelength dispersive measurement in the visible spectral region, away from
20 absorption resonances. The optical classifier proposed here could be applied to autonomous material identification protocols and
21 applications.

I. INTRODUCTION

22 Scientific data analysis has been accelerated by machine
23 learning by training models that allow a rapid interpretation of
24 complex data patterns and the automated control of measure-
25 ment devices.1,2 The autonomous identification and discovery
26 of chemical compounds for applications in science and
27 industry can therefore benefit from the development of
28 compact, portable, and highly accurate sensors powered by
29 machine learning.3 Remote molecular sensing based on light
30 exploits the dispersive and absorptive response of a material
31 system to electromagnetic radiation.4,5 Although chemical
32 methods can be very specific,6,7 optical sensing techniques can
33 be beneficial because light-matter interaction is nondestructive
34 and can be processed remotely.
35 The refractive index is an optical property of materials
36 fundamentally related to microscopic physicochemical charac-
37 teristics such as the dynamic polarizability as well as
38 macroscopic variables such as concentration, temperature,
39 and pressure.8,9 Refractive indices are commonly used for
40 quantifying the content of target molecules in agricultural,10,11

41 pharmaceutical,8 and manufacturing applications.12 Therefore,
42 a refractive index database over a broad range of frequencies
43 can serve as useful training data for a machine learning

44workflow that enables the autonomous identification of
45chemical compounds using light.
46Molecular spectroscopy databases have already been used
47for training machine learning algorithms in chemical
48identification problems.13−15 Efforts have focused on training
49classifiers with infrared (IR) absorption and Raman scattering
50databases, in the mid-infrared (mid-IR) spectral range (λ ≈ 3−
5150 μm).11−32 In general, the information in the mid-IR is so
52rich and complex that it would be very unlikely for different
53molecules to have the same peak structure, particularly in the
54so-called “fingerprint” region of the IR spectrum.33−35

55Compounds with the same chemical formula but different
56spatial conformation (isomers) can thus be discriminated by
57analyzing the position of their Raman peaks, for example.36

58Machine learning classifiers trained on vibrational spectroscopy
59data can therefore be very accurate, with identification errors of
60a few percent or less.13,16,28−32
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61 Alternative machine learning strategies for molecular
62 classification that are not trained with infrared absorption or
63 scattering spectra have also been reported.28−32 Away from
64 absorption resonances, molecules and materials experience a
65 dispersive response in the presence of external electromagnetic
66 fields, which is determined by the real part of the dielectric
67 function of the medium ϵ(λ). The imaginary part of ϵ(λ) gives
68 the extinction coefficient k(λ)1, which quantifies electro-
69 magnetic energy loss due to absorption and scattering.
70 Absorption and dispersion are fundamentally related to each
71 other via the Kramer-Kronig relation.9 In frequency regions
72 with negligible extinction, the dispersive response is entirely
73 determined by the refractive index n( ) Re= [ ] , which
74 provides information on the electronic structure of materials (λ
75 ≈ 400−800 nm) or their dielectric properties (λ > 50 μm). As
76 mentioned above, the refractive index n(ω) is also an extensive
77 property and thus correlates with the molecular density.
78 The refractive index has been used for detecting tissue
79 damage in biomedical samples using terahertz transmission
80 images (λ > 100 μm) and deep learning, reaching recall
81 performances of up to 93% with feature engineering
82 techniques.15,37 Databases with the static refractive indices (λ
83 → ∞) of small organic compounds, solvents, and polymers
84 have also been developed for training regression models that
85 predict the refractive index given a set of structural and
86 quantum chemical descriptors.38−43 Predictive models can be
87 useful for the automated discovery of organic optoelectronic
88 materials.44 Experimental databases with organic refractive
89 indices at the sodium wavelength (589 nm) have also been
90 used for constructing quantitative structure-property relation-
91 ships (QSPR) that can be used, for example, in the chemical
92 analysis of organic mixtures using visible light.45

93 For molecular classification tasks based on IR spectral data,
94 the target feature of interest for a classifier (“molecule
95 identity”) is learned from a high-dimensional feature vector
96 that encodes the spectral peaks of interest.13 In contrast, the
97 static refractive index of organic compounds is a single-valued
98 feature that does not have the same information content.46

99 The same applies to refractive index databases at a single

100wavelength away from ultraviolet and infrared absorption
101resonances. New databases and analysis techniques are thus
102needed for applications that can benefit from accurate organic
103molecule classification protocols based on the dispersive
104response of materials over a tunable range of wavelengths in
105the visible.
106Motivated by the growing interest in developing autono-
107mous tools for organic materials discovery,47−49 here we
108demonstrate a machine learning classifier of organic com-
109pounds based on the measurement of the refractive index n(λ0)
110at a single optical wavelength λ0 anywhere in the visible
111spectral region (400−750 nm), where most organic com-
112pounds are fully transparent.50 The classifier is trained with a
113publicly available materials science database containing the
114optical constants of 61 organic molecules and polymers over
115the spectral range spanning from ultraviolet to far-infrared
116 f1wavelengths. The classification scheme is illustrated in Figure
117 f11. We envision the proposed classifier for data analysis at the
118output of a liquid or gas-phase chromatograph that can
119separate complex chemical mixtures into multiple single-
120component fractions.51

121The rest of the article is organized as follows: After
122describing the structure and information content of the original
123spectral database in Sec. II.1, we describe the data
124preprocessing strategies in Sec. II.2 and demonstrate
125classification errors smaller than 1% in the visible range in
126Sec. III. Comparisons with recent Raman-based classifiers are
127given in Sec. III.4. We conclude and suggest future directions
128and applications in Sec. IV.

II. METHODS
129II.1. Experimental Refractive Index Database. We do
130web scraping on a public domain database of experimental
131optical constants available at https://refractiveindex.info.52

132The Web site is a repository of published data from the
133scientific literature since 1940. The site is organized into
134categories that resemble a virtual bookshelf: The “Shelf”
135category groups materials into inorganic, organic, glasses,
136others, and 3D; the “Book” category contains the chemical

Figure 1. Illustration of the proposed machine learning classification scheme for chemical identification. The left panel shows a sample of the
refractive index n(λ) and extinction k(λ) spectra used for model training. The spectral data is public domain and can be downloaded at https://
refractiveindex.info.52
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137 compound name, which will be the “class” label predicted by
138 the machine learning classifier on output; the “Page”
139 subsection refers to the source where the optical data was
140 first reported in the literature as well as comments and other
141 information such as the group velocity and group velocity
142 dispersion, the measurement wavelength range, and the state of
143 matter of the sample (gas, liquid, or solid). Each “Page” record
144 has a csv file with the spectral data for n (refractive index) and
145 k (extinction coefficient) over a range of wavelengths (λ).
146 From the general data set, we build a smaller set by selecting
147 “Organic Materials” in the “Shelf” category, which contains 61
148 organic molecules and polymers. The compiled file has
149 194 816 data records, sorted in columns with the features
150 “Shelf”, “Book”, “Page”, “λ” (wavelength), “n” (refractive
151 index), and “k” (extinction coefficient). The data has 418
152 missing n values and 60 944 missing k values. Example data

153records are shown for the “Acetone” class in Table S1 of the
154Supporting Information (SM).
155 f2In Figure 2, we show a visualization of the organic data set
156over a grid of wavelengths (λ) and refractive indices (n). The
157color code indicates the number of data records in each (λ, n)
158region [The records involve measurements up to 25 μm and
159refractive indices in the range (0.0−2.3)]. The upper and right-
160side panels show the number of organic compounds (counted
161as a label on the “Book” category) with data records in each
162wavelength and refractive index range.
163II.2. Preprocessing the Training Data Set. The original
164database is naturally heterogeneous and imbalanced, as some
165compounds and frequency regions have been studied more
166intensely than others in the literature. This represents a
167challenge for the implementation of machine learning
168classification algorithms.53 Data sets with unequal data records

Figure 2. Distribution of the raw data from the https://refractiveindex.info/52 over a broad range of wavelengths and refractive indices. Side panels
show cuts of the data record distribution over wavelengths (top) and refractive indices (right).

Figure 3. Number of data records per molecular compound (61 compound class labels) available in the raw database from ref 52. The record
distribution after data augmentation via Sellmeier fitting in the UV/vis is also shown. The correspondence between the class labels and organic
compound names is given Table S6 of the Supporting Information.
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169 per target feature lead to majority and minority classes, thus
170 affecting the overall predictive accuracy of classification

f3 171 models.54 Figure 3 shows the number of data records per
172 organic molecule class for the raw database (RD) and after
173 preprocessing through data augmentation (DA). The number
174 of records in the original data varies from only a few spectral
175 points (e.g., Polymethyl Pentene, Class Label = 58) to a few
176 thousand (e.g, Ethanol, Class Label = 1), which illustrates the
177 class imbalance problem. In addition, different compounds in
178 the refractive index database can have different types of
179 spectroscopic features over different wavelengths, which is a
180 form of type imbalance.55

181 We tried several preprocessing strategies to overcome class
182 and type imbalance in the raw data set, including oversampling
183 (OS), undersampling (US), and physics-based DA. We also
184 used feature engineering (FE-1 and FE-2) strategies, spectral-
185 based binning (SBB), and spectral-based binning with feature
186 engineering (SBB-FE1 and SBB-FE2), attempting to increase
187 the prediction accuracies with the original imbalanced data set.
188 The details of these preprocessing strategies are given in the
189 Results section.
190 II.3. Random Forest Classifier. The random forest (RF)
191 algorithm was chosen as the default method for classification.
192 Random forest is a supervised machine learning algorithm
193 based on an ensemble of decision trees.56 It uses bagging and
194 feature randomness when building each individual decision
195 tree to create an uncorrelated forest of trees whose prediction
196 is more accurate by committee than individually. The data set
197 was divided into 75% for training and 25% for testing. The
198 results below were obtained with a single instance of the split,
199 but due to the intrinsic overfitting evidenced by the relatively
200 large difference between our training and testing accuracies, we
201 carried out additional cross-validation tests over random splits.
202 The cross-validated accuracies do not vary significantly among
203 different splits (see Table S3 in the SM). RF was implemented
204 using Python’s Scikit-Learn library with default hyper-
205 parameters.57 In early stages of this study, we obtained
206 classification accuracies with alternative models such as
207 gradient boosting, support vector classification, and logistic
208 regression on the raw data set, and random forest performed
209 best (see test results Table S5 in the SI). The code and the
210 data sets used in this work are publicly available at https://
211 github.com/fherreralab/organic_optical_classifier.

III. RESULTS AND DISCUSSION
212 We now discuss the random forest classification performance
213 obtained by training with the original imbalanced data set and
214 after preprocessing the data. We tested several preprocessing
215 techniques to gain insight on the optimal experimental setup
216 necessary for achieving reasonable identification outcomes
217 using minimal optical measurements.
218 III.1. Classification Accuracies with Imbalanced Class
219 Sets. Incorporating domain knowledge into the features of the
220 training set is known to increase the prediction performance of
221 classification models. Based on this intuition and inspired by
222 the feature structure of Raman-based classifiers18,24,26 where
223 the target class is associated with a high-dimensional feature
224 vector containing the spectral peaks, we tested whether
225 grouping small fractions of the curves n(λ) and k(λ) into
226 feature vectors x = [λj, nj,kj] improved the classifier
227 performance. As explained above, the original data set has a
228 three-dimensional feature vector per target class (j = 1)
229 representing a single evaluation of the n and k curves at a given

230value of λ. We then build six-dimensional (j = 1,2) and nine-
231dimensional feature vectors (j = 1,2,3) containing the
232information from two and three consecutive points in the n
233and k curves. We refer to the six- and nine-dimensional feature
234vector schemes as feature engineering 1 (FE1) and 2 (FE2),
235respectively. As a result of the increase in the number of
236features per target class, the number of records is reduced. For
237classification problems with large data sets, binning strategies
238can prove useful for improving the overall class prediction
239accuracy.55,56,58 In addition to the FE1 and FE2 strategies, we
240adopt a spectral-based binning (SBB) strategy based on the
241division of the wavelength domain into five spectroscopic
242regions: UV [λ < 0.40 μm] containing 1773 data records,
243Visible (VIS) [0.40 < λ < 0.75 μm] with 5979 records; Near-
244Infrared (Near-IR) [0.75 < λ < 1.50 μm] with 35 445 records;
245Infrared (IR) [1.50 < λ < 4.0 μm] with 135 407 records; and
246Far-Infrared (Far-IR) [λ > 4.0 μm] with 66 678 records. Our
247splitting of the IR spectrum into subregions is not necessarily
248standard.59

249 f4In Figure 4, we compare the training and testing accuracies
250of the random forest classification training with the raw

251database (RD) as well as FE and SBB preprocessing strategies.
252Accuracies are also provided in Tables S3 and S4 of the SM.
253The overall testing accuracies are about 80% with and without
254preprocessing, although feature engineering and spectral-based
255binning tend to reduce the prediction accuracy. Combining FE
256and SBB did not improve performance relative to the raw data.
257The low performance of the classifier over the entire range of
258wavelengths (UV to Far-IR) comes roughly speaking from an
259average of spectral regions of very high accuracies (IR) and
260regions with very low accuracies (UV/vis). In what follows, we
261separately studied the performance in different spectral regions.
262III.2. Addressing Class Imbalance in the Database. In
263 f5Figures 3 and 5, we illustrate that the original data set contains
264a disproportionate number of data records per organic
265compound in the IR spectral bin (1.50−4.0 μm), relative to
266the UV and VIS bins. This type of record distribution
267generates a class imbalance problem60 that we address using
268the following strategies: undersampling (US), oversampling
269(OS), and data augmentation (DA).
270Resampling strategies aim to balance classes in the training
271data by reshaping the data set such that the numbers of records
272in the different classes becomes comparable.60 Undersampling

Figure 4. Overall training and testing accuracy for imbalanced data,
not separated by wavelength range for the different data preprocessing
strategies.
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273 is a method that randomly reduces the number of data records
274 in the majority class while oversampling duplicates randomly
275 chosen records in the minority class. Both resampling
276 strategies can be effective when used independently or
277 combined. Figure 5 shows the record distribution used for
278 training the random forest model after OS and US are carried
279 out. In the resampled data set, the number of records in the
280 UV/vis is comparable with the IR.
281 In addition to resampling (OS and US), we augment the
282 data set using physics-based modeling. Specifically, we generate
283 refractive index data using the Sellmeier equation9

n A
B

C
B

C
( )2 1

2

2
1

2
2

2
2

= + +
284 (1)

285 where (A,Bj,Cj) are phenomenological coefficients. For each
286 molecule in the original database that has refractive index
287 measurements in the UV/visible, we fit the experimental curves
288 for n2 using eq 1 to obtain Sellmeier coefficients. These are
289 then used to interpolate the index data in the region λ =
290 [200,750] nm. Therefore, we exclude the near-infrared
291 wavelengths from the fitting, despite the Sellmeier equation
292 still being valid in this region for most organic materials. This
293 data-augmentation procedure increases the number of records
294 in the UV and VIS bins to about 3000 additional points per
295 chemical compound. Figure 5 shows that the distribution of
296 training records set after DA changed significantly with respect
297 to RD. The augmented data set has about 400 000 records,
298 with comparable numbers of records in all spectral bins. DA
299 has also been used to resolve the imbalance problem in
300 Raman-based classification problems.28−32

301 After addressing class imbalance in the raw data set, we
302 tested the prediction performance of the random forest

f6 303 classifier on the different spectral bins. Figure 6 shows that
304 the accuracies after US and OS improved significantly relative
305 to the imbalanced data set, reaching 97% for UV and 99% for
306 VIS regions (see also Table S4 in the SM). The accuracies after
307 US and OS however did not change significantly in the Near-
308 IR (2% improvement) and IR (0% improvement) bins. There
309 is a decrease of 25% in accuracy for Far-IR, likely due to the
310 reduction of data records on this region during undersampling.
311 On the other hand, data augmentation (DA) significantly
312 improved the performance of the classifier (99% for UV and
313 98% for VIS) without affecting the accuracies in the infrared
314 bins (see Table S4 in the SM). The accuracies for FE1 and
315 FE2 significantly decreased as expected. The reduced number

316of data records resulting from the grouping of the features
317dramatically affects the model performance in the less
318represented spectral bins.
319The results in Figure 6 suggest that measuring the refractive
320index in the UV/vis region is in principle sufficient for a precise
321classification of chemical compounds. In comparison with the
322accuracies reached in the far-infrared spectrum (λ > 5 μm,
323fingerprint region), the classification accuracies in the visible
324region after data augmentation are equally good, without
325additional steps of hyperparameter optimization for the
326random forest model.
327III.3. Estimating the Required Measurement Preci-
328sion. The precision with which the refractive index is
329measured in experiments should affect the classifier perform-
330ance. Compounds with similar refractive indices at a given
331wavelength in the visible would not be reliably distinguished if
332the index measurement does not have enough significant digits.
333We quantify this intuition by computing the classification
334accuracy achieved by the random forest model using training
335data whose precision was manually truncated to a finite
336 f7number of significant figures. In Figure 7, we show the testing
337accuracies obtained using different decimal digits for n(λ) in
338the training set, separating the results by preprocessing
339strategy. While the classification accuracies are in general
340poor (<82%) for single-wavelength index measurements with

Figure 5. Distribution of data records per spectral bin in the raw
database (RD), after oversampling (OS), undersampling (US), and
data augmentation (DA).

Figure 6. Testing accuracy after spectral-based binning with different
data preprocessing strategies: Feature engineering (FE1 and FE2),
oversampling (OS), undersampling (US), and data augmentation
(DA). The accuracies of the raw database are also shown for
comparison.

Figure 7. Testing accuracies for refractive index measurements with
different precision. Results are shown for different preprocessing
strategies: Featured engineering (FE1 and FE2), oversampling (OS),
undersampling (US), and data augmentation (DA). The accuracies
for the raw database (RD) are also shown for comparison.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.2c07955
J. Phys. Chem. A XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.2c07955/suppl_file/jp2c07955_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jpca.2c07955/suppl_file/jp2c07955_si_001.pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.2c07955?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as


341 two significant figures or less, the raw database already gives
342 better classification accuracies (∼95%) when trained with
343 index data of at least three decimal places. Increasing the
344 number of significant figures beyond four decimals does not
345 significantly improve the accuracy, regardless of the prepro-
346 cessing strategy used.
347 These high testing accuracies for single-wavelength measure-
348 ments are only possible because the trained random forest
349 model has learned the molecular spectra over a broad range of
350 wavelengths spanning hundreds of nanometers. We confirm
351 this by training the same random forest model described above
352 (see Methods Section) but with a reduced training set with
353 only 89 refractive index records at 1000 nm (near IR). Only 42
354 compounds have measurements reported around this target
355 wavelength. The testing accuracies obtained with such a
356 restricted one-wavelength data set are very poor (30% or less,
357 see Table S3 in the SM). This confirms the limited
358 classification ability expected for conventional single-point
359 index measurements. Our work extends this intuition by
360 exploiting the correlations learned by the decision trees in the
361 refractive index values at different wavelengths. Figure 7 shows
362 that these correlations are more effectively learned when the
363 index measurements have interferometric precision (4 digits or
364 more).
365 III.4. Comparison with Raman Classifiers. Class
366 imbalance has also been addressed in other molecular
367 classification studies based on Raman spectral databases,
368 which also tend to be heterogeneous with a data record
369 distribution that over-represents compounds of particular
370 interest in chemistry.28−32 To address class imbalance,
371 researchers have explored data-augmentation strategies such
372 as peak shifting, noise addition, smoothing, spline interpola-
373 tion, and polynomial reconstruction. These preprocessing
374 strategies were implemented to reconstruct the data set before
375 training deep learning classifier models. In our analysis of the
376 refractiveindex.info database, the Sellmeier fitting procedure is
377 a valid augmentation strategy that can be used to reconstruct
378 the part of the training set corresponding to ultraviolet and
379 visible wavelengths, without introducing data leakage.9 In

t1 380 Table 1, we compare the refractive index approach with the
381 recent Raman-based classifiers in the literature, showing that

382the dispersive method can also give high classification
383performance, using a similar a preprocessing strategy
384(interpolation) on data sets with a comparable volume of
385data records and molecular classes.28−32

IV. CONCLUSIONS
386We have built a machine learning classification scheme to
387identify organic compounds based on refractive index
388measurements in the visible spectral region, in which most
389organic compounds are highly transparent. We trained a
390random forest classifier using decades of experimental data
391from the scientific literature. The database contains 194 816
392spectral records of refractive index and extinction curves of 61
393organic compounds and polymers over a broad range of
394wavelengths from the UV to the far-infrared. There is a class
395imbalance problem in the experimental data that restricts the
396classification accuracy for refractive index inputs at visible
397wavelengths (400−750 nm) to approximately 80%. This
398imbalance is primarily due to the disproportionate number of
399infrared absorption records reported in the mid- and far-
400infrared regions. Imbalance is a common problem when
401working with spectroscopic databases as the experimental data
402is deposited from different sources.28−32

403We addressed this class imbalance issue by preprocessing the
404raw data before training the classifier using resampling and
405physics-based data-augmentation strategies analogous to those
406employed by other machine learning classifiers trained with
407Raman spectra.28−32 By training the random forest model with
408preprocessed balanced data, we achieve molecular classification
409testing accuracies in the UV and visible regions better than
41098%. Additional improvements can be expected with additional
411steps of model hyperparameter optimization. Such high
412accuracies are comparable to those obtained using only
413Raman spectroscopy databases (see Table 1), thus demon-
414strating the feasibility of using machine learning tools for
415enhancing the capabilities of laser-based chemical sensing
416devices. The high classification precision reached via data
417augmentation for chemical identification suggests that a similar
418technique would be applicable with other problems that
419involve continuous-variable data sets that can be interpolated
420using physics models. Further research is needed to generalize

Table 1. Prediction Accuracies Using Raman Spectral Databasesa

Method Spectral Database
Testing

Accuracies (%) Data Augmentation Ref.

1D-CNN Minerals and organic compounds 100 Standard augmentation transformations in vibrational spectroscopy 31
CRL 72 organic compounds 97.5 Gaussian noise and linear combination 28
DNN 72 organic compounds 92.6* Shifting, Gaussian noise, and interpolation 30

96.4**
CNN 72 organic compounds 81.9* Shifting, Gaussian noise, and interpolation 30

86.0**
DRCNN 72 organic compounds 98.1 Shifting and Gaussian noise 29
1D-CNN and

KNN
620 mineral and 211 synthetic

organic pigments
97.38 Shifting, Gaussian noise, Savitzky-Golay smoothing, spline interpolation,

and polynomial reconstruction
32

RF 61 organic compounds 99 (UV) Sellmeier equation fitting on UV/vis optical ranges This
work98.1 (vis)

99.2 (Near-IR)
83.1 (IR)
94.8 (Far-IR)

aThe number of molecules present in the database is specified when the data is available. We also list the data-augmentation methodologies used in
these works. Model acronyms: 1D-CNN = 1D convolutional neural network, CRL = contrastive representation learning, DNN = deep neural
network, CNN = convolutional neural network, DRCNN = deeply recursive convolutional neural network, KNN = K-nearest neighbor classifier,
RF = random forest. *Without transfer learning, **with transfer learning.
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421 the proposed molecular classifier to identify the structural and
422 other chemical features of the molecules that are present in the
423 Refractive Index Database.52 Our work thus serves as a starting
424 point for the development of remote chemical sensors based
425 on laser light.
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464 ■ ADDITIONAL NOTE
1

465 We follow photonics notation and denote the extinction
466 coefficient by k.
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